ITOS Telemetry & Command Interfaces Guide

Integrated Test & Operations System
$Date: 2006/09/25 22:04:12 $

ITOS Development & Support Group
NASA/GSFC Code 584, Greenbelt MD 20771

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

Introduction 1

Introduction

The 1TOS’s reason for being is to ingest telemetry and send commands. This document
presents the interfaces 1ITOS presents to the outside world for accomplishing those tasks.

The primary mechanism for both transmitting commands and receiving telemetry is an
IP network. The system can communicate using TCP or UDP. It can initiate or accept TCP
connections, and can receive and transmit UDP unicast or multicast datagrams.

For telemetry, the system was designed to accept CCSDS version 1 transfer frames or
packets. It also can process other forms of telemetry, including TDM, with certain restric-
tions. It can handle a number of telemetry headers and trailers, and can perform CRC and
Reed-Solomon error control.

For commands, the system transmits cCSDS telecommand transfer frames, which option-
ally may be coded into ¢CsDS command link transmission units. It can generate a number
of command headers and trailers, encapsulate commands in NAscoM 4800-bit blocks, and
generate AsCII-hex data for output to a SCAT-based front-end computer.

The system also can perform command throttling, inserting a programmable delay be-
tween transmitting individual commands in a sequence.

The system is designed to provide a great deal of flexibility as delivered, and to be easily
modified to provide support for additional command and telemetry types and wrappers.

$Date: 2006/09/25 22:04:12 §

Chapter 1: Telemetry Types 2

1 Telemetry Types

A program with the unfortunate name frame_sorter is the primary telemetry interface
in the 1TOS. It accepts several different kinds of telemetry, which it can sort into archive files
or output queues destined for other programs and further processing. It also can extract
CccCsDs source packets from a transfer frame stream and sort them by application ID into
archives or output queues.

The system can run multiple frame_sorter processes and thus can process multiple
telemetry streams simultanseously. That, for example, is how we handle both live space-
craft telemetry and ground station monitor blocks at the same time. In the SMEX-Lite
integration and test environment, we receive spacecraft telemetry, and ccsps-formatted
telemetry from the power GSE and the attitude control system’s dynamic simulator.

1.1 Supported Telemetry Formats

The 1TOS accepts the following types of telemetry, some of which were given misleading
names:

‘ccsds’ These are version 1 telemetry frames, called transfer frames. This input requires
three arguments: frame length in bytes, CCSDS version number, and spacecraft
ID. Obviously, the version always should be zero. The length should be the
length of the transfer frame proper from the start of the primary header through
the end of the Operational Control Field (usually a CLCW), if present, but not
including the attached sync marker or any frame error control. Sync markers
and error control fields must be handled as wrappers.

aos These are version 2 telemetry frames, called virtual channel data units (VC-
DUs). This input requires four arguments: VCDU length in bytes, VCDU
Insert Zone length in bytes, spacecraft 1D, and OCF flag. The VCDU length
should be the length of the transfer frame proper from the start of the primary
header through the end of the Operation Control Field (OCF), if present, but
not including the attached sync marker or any frame error control. Sync mark-
ers and error control fields must be handled as wrappers. This implementation
assumes that every VCDU contains packets.

‘packet’ These are CCOSDS telemetry source packets, common to both version 1 and 2
CCSDS telemetry.

‘nascom’ These are 4800-BIT nascom blocks in cases where we expect to extract data
directly from the data field. This is used by the SMEX project to extract data
from ground station monitor blocks.

‘spartan’ These are TDM major frames. We developed the capability to process TDM data
for the Spartan project; hence, the name. There is code specific to Spartan
telemetry which sorts the archives and output by the major frame counter, but
a similar, generalized PCM processor easily could be constructed from this base.

‘itp This is a very specialized input: It processes CCSDS source packets inside the

1TP wrapper (which we’ll discuss later). The ITP message may contain multiple

$Date: 2006/09/25 22:04:12 §

Chapter 1: Telemetry Types 3

packets, and the frame_sorter was designed to deal with a single data item at
a time, with multiple wrappers, not the reverse. This input is used to accept
data from GSFC’s old Code 521’s Front-end Telemetry & Command Processor
(FTCP).

‘repack’ This is a generally useful input: It accepts input blocks of a given size, and
extracts output messages of a different size, aggregating or splitting the input
as needed.

1.2 Repack Input Notes

This input requires three arguments: input frame length, output frame length, and the
sync pattern expected on the output frames. See the note below.

The ‘repack’ input is very useful, especially with the ‘junk’ wrapper, which can be used
to skip over anything at the beginning or end of in input frame. If the input wrappers
contain a sequence count, the repack input looks for sequence continuity and will try to
resynchronize to the input if it sees a sequence error.

If the sync pattern argument is non-zero, the ‘repack’ will check that the given sync
is present on every frame it is about to output. It uses the length of the given sync to
determine how many bytes of the ouput it should compare. If the sync marker is not
present, it will scan the last input looking for it, and if it still doesn’t find it, it will continue
inputting frames and searching until it finds an output sync. Then it will pick things up as
usual.

$Date: 2006/09/25 22:04:12 §

Chapter 2: Telemetry Wrappers 4

2 Telemetry Wrappers

Telemetry can come in a variety of headers and trailers, and the system is architected to
handle these flexibly. It incorporates an extensible wrapper library, 1ibtmw, which is used
by many telemetry processing programs to handle telemetry wrappers.

Wrappers are specified to the system as a list of names, and are processed from left to
right, outermost to innermost. Some wrappers take optional positional arguments, which
are separated from the wrapper name by a colon and separated from each other with

commas.

2.1 Wrapper Data

The following data may be extracted from wrappers or set by a wrapper processor.

unsigned wrapper_errors; /* non-zero if wrapper error seen
enum boolean crc_enab; /* true if CRC checking enabled */
enum boolean crc_error; /* true if CRC error detected */

enum boolean sync_in_crc; /* true if sync in CRC calculation */
enum boolean reversed; /* true if bits in reversed order */

enum boolean inverted; /* true if bits appear inverted x/

enum boolean last_frame; /* true if last frame in session */
unsigned sync_error_bit_count; /* 0-15 */

enum boolean frame_bit_slip; /* true if bit slip detected */
FrameSyncState sync_state; /* frame sync state for this frame */
enum boolean rs_enab; /* Reed-Solomon ECC enabled */

enum boolean rs_error; /* Reed-Solomon uncorrectable error */

enum boolean rs_corrected; /* Reed-Solomon corrected errors */
enum boolean mc_seq_chk_enab; /* master channel sequence chk enab */
enum boolean mc_seq_error; /* master channel sequence error */

unsigned msg_length; /* msg (frame) length from wrapper */

/* (must be total message length) */

UNIX_TIME rcpt_time; /* time frame received by front-end */
unsigned pkt_count; /* count of packets in ITP message */
unsigned seq_num; /* sequence count of message */
unsigned seq_mod; /* modulus of sequenct count */

2.2 Supported Wrappers

These are the currently recognized wrappers:

‘annol2’ This is the 12-byte annotation that the frame_sorter and the old FTCP
prepends to CCSDS source packets extracted from a transfer frame stream.
By default, it gets put on all derived output from the frame_sorter to carry
forward some of the information extracted from the frame layer and ground
message wrappers.

‘annol2aos’

This is the 12-byte annotation that the frame_sorter prepends to CCSDS source
packets extracted from an AOS VCDU stream. It is identical in format and

$Date: 2006/09/25 22:04:12 §

*/

Chapter 2:

‘ccsdstf’

crc

‘crcword’

‘dad’
‘fepb21’

‘ftcp’

itp

junk’

rs

)

‘rsdebug

‘smex’

‘tsifep’

Telemetry Wrappers 5

function to the ‘anno12’ header, except that its first two bytes are copied from
the first two bytes of the header of the VCDU which contained the annotated
source packet.

This is used only by the 1TOS packet dump facility for formatting the header
information in its output.

This is a CRC-16 error detector. This wrapper takes two arguments: the num-
ber of bytes to skip before beginning the CRC calculation, and the polynomial
to use in the calculation. These default, respectively, to zero and the CCsDS
recommended polynomial 0x11021 (x~16 + x~12 + x5 + 1). This wrappers
strips off the 2-byte trailer which is the CRC check word.

This is a no-op 2-byte trailer, intended for skipping the CRC word when it’s
been processed by something upstream, but not removed from the frame. You
could just as well use ‘junk:0,2’ for this.

This is the Deep Space Network (DsN) Data Delivery (DDD) header.
This is an obsolete header we added for the old gsFc Code 521.

This is the 1TP header with an 8-byte trailer, and is the wrapper used for transfer
frames by the FTCP.

This is the 16-byte 1TP header that gets put on the front of a lot of our telemetry
for mostly historical reasons.

This is a way to skip useless header and/or trailer data, and takes two argu-
ments: a header length and a trailer length, both of which default to zero. This
is particularly useful with the repack input, and for skipping attached sync
markers and error control fields.

This is the Reed-Solomon decoder, and it takes two arguments: The interleave
factor, I, from 1 to 5; and the virtual fill length, VF, in bytes, divided by I.
The defaults are 5 and 0.

This is the same as ‘rs’, but it prints warnings to the event log for each frame
in which it finds a correctable or uncorrectable error.

This is the SMEX telemetry header, used by all SMEX missions after FAST. It is
better known as the LEO-T header.

This is a collection of TSI Telsys Inc. front-end processor (FEP) trailers:
tsifep_rsqat, tsifep_tct, and tsifep_fsqt in order outermost to inner-
most. This takes two optional arguments: The first selects the wrapper collec-
tion, the second is passed to the tsifep_tct wrapper. If the first argument
to tsifep is tdm, the tsifep_rsqat trailer is not included in the wrapper
collection; if the argument is ccsds or not given, all three trailers are included.

‘tsifep_fsqt’

This is the 2-byte TSI FEP frame synchronization quality trailer.

$Date: 2006/09/25 22:04:12 §

Chapter 2: Telemetry Wrappers 6

‘tsifep_tct’
This is the 10-byte TSI FEP time code trailer. The time code may be of two
forms, selected by optional argument: cds, the default, selects the CDS time
code; pb4 selects the PB4 time code.

‘tsifep_rsqat’
This is the 32-byte TSI FEP Reed-Solomon quality annotation trailer.

‘tsisp_ah’
This is the 24-byte TSI service processor "Gem" annotation header.

2.2.1 12-byte Annotation Header Formats

An ‘anno12’ 12-byte annotation header looks like this:

e e e +
| enab | err | cor |
\..... /
\ /
o s et S S B e e et +
| vo | scid | ve | 2 | rs | ? | t_fmt | flags | £ill | gnd_time |
/2 | 10 |3 213 1] 4 | 8 | 16 | 48 |
e s et S S AR e e o +
[[0] | [1] | [2] | [31 [[4lI(s]11C6]!l...1[11]]
/ \
/ \
pkt	dir	pkt	crc	crc	inc	ve	tf
hdr		seq	err	ena	pkt	seq	hdr
err		err				err	err
e e e o e e e R +							
[3]							
The ‘anno12ao0s’ header is identical, except the first two bytes have the following format:							
s N							
vn	scid	vec					
2	8	6					
Fo— b +————+
[[0l | [1] |
The fields are, in order:
field word(s) bit(s) description
frame version 0 0-1 version field from COSDS
transfer frame hdr.
frame s/c ID 0 2-11 spacecraft 1D from CCSDS
transfer frame hdr.
frame vC ID 0 12-14 virtual channel 1D from
ccsDs transfer frame hdr.
reserved 0 15

$Date: 2006/09/25 22:04:12 §

Chapter 2: Telemetry Wrappers

Reed-Solomon enabled

Reed-Solomon error

Reed-Solomon
corrected
reserved

time format

packet header error

data direction reversed

packet sequence error

frame error

frame error enabled

incomplete packet

VC sequence error

frame header error

fill location

10

11

13

14

15

0-15

if set, Reed-Solomon er-
ror detection and correction

enabled.

if set, uncorrectable
Reed-Solomon error(s)
encountered.

if set, the Reed-Solomon code
corrected one or more errors.

Defines time code format.
Acceptable values are given
in the next table.

if set, packet header ex-
tracted from frame with un-
correctable error.

if set, data received in reverse
bit order.

if set, this packet’s sequence
count is not the successor or
the previous packet with the
same application ID on the
same VC.

if set, uncorrectable error de-
tected in one or more frames
from which this packet was
extracted.

12 if set, frame error checking
was enabled.

if set, packet is incomplete,
and filled to it’s indicated
length beginning at ‘fill
location’.

if set, a transfer frame from
which this packet was ex-
tracted was not the successor
of the previous frame on the
same virtual channel.

a frame from which this
packet was extracted had an
incorrect version or space-
craft ID.

byte offset from the end
of the packet primary
header of packet fill data, if
‘incomplete packet’ is set.

$Date: 2006/09/25 22:04:12 §

Chapter 2: Telemetry Wrappers 8

ground received time 4-6 0-15 ground received time ex-
tracted from frame wrappers
in format defined by ‘time
format’ above.

In the above table, ‘words’ are 16-bits, and bits are in CCSDs order; that is, bit 0 is the
most significant bit.

Time format codes are:

‘0’ none

‘1’ PB1 code

‘2-3’ reserved

‘4 PB4 code

‘-7’ reserved

‘g’ relative TIME42, a time in CCSDS Unsegmented Code (CUC)

‘9’ absolute TIME42, a date in CUC, default for annol12 headers created by ITOS

‘10-15’ reserved

2.2.2 ITP Header Format

The 1TP header is defined as follows:

Field Bytes Description

message length 0-1 message length, including I1TP
header.

message class 2-3 message data class; for example:
telemetry, command, etc.

message type 4-5

signature 6-7

message subtype 8-11

PDU count 12-13 in some contexts, the number of
packet data units in the message.

user area 14-15

2.2.3 SMEX / LEO-T Telemetry Header Format

A SMEX / LEO-T telemetry header looks like:

o o o +
| vo | len | flags | time |
| 2 | 14 | 16 | 48
Fomm Fomm Fomm——— +
/ \
/ \
| rs | rs | crc | cxc | mcs | mecs | inv | frm | rev | class |

$Date: 2006/09/25 22:04:12 §

Chapter 2: Telemetry Wrappers

where the fields are, in order:

field
header version
message length

flags
Reed-Solomon enabled

Reed-Solomon error

CRC enabled

CRC error

MCS check enabled

MCS error

inversion flags
frame sync mode

reverse data
data class

ground received time

PB5 flag bit
PB5 truncated Julian
day

PBS5 seconds of day

PB5 seconds of day
PB5 milliseconds

| ena | err | chk | err | | sync |

| | ena | | | mode |

| 1 111 1 2 | 2 |
= F———— o e = +————— =
word(s) bit(s) description

0
0

0-1
2-15

0-15
0

8-9

10
11-15

0-47

1-14

15
0-15
0-9

header version number
length of the message in-
cluding the 10-byte SMEX

header.
Annotation flags.

Reed-Solomon decoding was
performed by the ground

station.)

Message contains uncor-
rectable Reed-Solomon
error;

Ors.
Cyclical Redundancy Check-
ing was performed by the

ground station.
The CRC indicated errors in

the message.

Master channel sequence
number checking was
performed by the ground
station.

A master channel sequence
discontinuity was seen at the

station.)
0, data true; 1, data inverted;

2, inverted data made true.
0, search; 1, check; 2, lock; 3,

flywheel.

Data bits reversed.

1, spacecraft telemetry;
2, spacecraft command,;
3, tracking data; others
undefined.

Ground received time stamp,

in PB5 format.
Always zero.

Unsigned count of days from
the epoch which began Octo-

ber 10, 1995.
Seconds of day, most signifi-

cant bit.

Seconds of day, remaining

bits.
Milliseconds of day.

$Date: 2006/09/25 22:04:12 §

Chapter 2: Telemetry Wrappers 10

Spare 4 10-15 Unused bits.

2.3 End-of-Session Indication

Telemetry sources may indicate end-of-session to ITOS by sending an empty outermost
telemetry header; that is, a header that indicates by it’s length field that no data follows.
(It is not possbile to send an end-of-session indication with an outermost header that does
not carry a message length field.)

ITOs does not archive end-of-session messages, but it does pass them to programs receiv-
ing telemetry streams. Applications receiving a CCSDS packet stream from 1TOS will be
sent an empty ITP header to indicate end-of-session; that is, an 1TP header with its length
field set to the 1TP header length (16). Applications receiving from 1TOS a copy of ITOS’s
telemetry input will receive the same end-of-session token that ITOS received.

ITOS may be set up to shut down a telemetry stream upon receiving end-of-file from
the telemetry source. If this is done, then 1TOS will generate end-of-session tokens on all
telemetry outputs before shutting down the telemtry stream.

$Date: 2006/09/25 22:04:12 §

Chapter 3: Telemetry Networking 11

3 Telemetry Networking

The frame_sorter can accept telemetry using Internet Protocol (1P) sockets, over either
the Transport Control Protocol (TCP) or User Datagram Protocol (UDP). It can acccept or
initiate TCP connections, or receive unicast or multicast UDP datagrams.

In ‘server_tcp’ mode, the system will listen on a given 1P port for a connection. When
the connection is broken, the program will reset and begin listening for a new connection.
This cycle will continue until end-of-session or until the input is explicitly destroyed.

In ‘client_tcp’ mode, the system will initiate a connection to a given host and port
combination. If the connection is broken, the input is destroyed.

In ‘udp’ mode, the system will create a socket at a given port number and read datagrams.
If given a host address in UDP, and that address is a class D address, the frame_sorter
program will join the given multicast group automatically.

The manner in which the frame_sorter is set up is controlled by the telemetry controller.

$Date: 2006/09/25 22:04:12 §

Chapter 4: Telemetry Frame Synchronization 12

4 Telemetry Frame Synchronization

The 1TOS comes with a frame synchronization program, which can do bitwise frame sync
on serial or 1P data and data in disk files that contain no extra wrappers just raw telemetry.

The FrameSync program is capable of syncronizing frames having up to 32 bits of sync
into output frame words of up to 16 bits placed into a specified number of 8 bit bytes per
word. The program can be set up to work on input bytes that are in reverse bit order (from
Isb to msb). Sync detection for inverted (one’s compliment) data is automatic and inverted
data will be automatically inverted back to normal before being output. The program has
been tested with an EDT SSE and CDA-16 serial interface boards at input rates up to 40
Mbits/sec in the worse case condition with raw logging enabled and 50 Mbits/src without.
Higher rates are attainable with faster multiple processor computers.

The input data is byte oriented stream that can come from a serial input device, an IP
stream using UDP or TCP as a server or a client. Data can also be input from a file to act
like a playback for testing. The input data stream can be optionally archived to disk while
being processed for later recovery.

The output data frames can have optional headers and/or trailers appended as well as
optional deradomization applied. The output stream connection can be as a TCP/IP server,
UDP, or an output pipe.

The program is a state machine of SEARCH, CHECK, LOCK, & FLY-WHEEL states.

‘SEARCH’ Program searches for frame sync pattern until it finds it either normal or in-
verted then changes to CHECK state.

‘CHECK’ Program checks specified number of successive frames for sync in the proper
place before declaring a LOCK condition. If this condition fails then program
returns to SEARCH state and all check frames are discarded. If sync is main-
tained all checked frames are transmitted and the program goes to LOCK state.

‘LOCK’ Program is now aligned on the frame sync pattern and will continue transferring
data to the output as telemetry frames of predetermined size. Sync (normal
and inverted) will be continued to be tested on incoming frames. Program will
remain in this state unless sync is lost when it goes to FLY WHEEL state.
The program will allow for forward sync slippage (1 or more extra bits before
sync) specified from 1 to sync word size in bits before declaring and out of lock
condition. No backward bit slippage (1 or more missing bits) is allowed by
the program. This is an automatic drop lock condition. If sync is found to be
inverted, the succeeding frame data will be automatically inverted to match.

$Date: 2006/09/25 22:04:12 §

Chapter 4: Telemetry Frame Synchronization 13

‘FLYWHEEL’
If sync is lost on the input for up to specified FLY WHEEL value number of
frames then program will continue to transfer frames to the output. If Fly wheel
count is exceeded and sync is not found in the proper position then program

drops back into SEARCH mode. If sync is found then program returns to
LOCK state.

Status mnemonics are available in the database for monitoring

lock status GBL_FRMSYNC_STAT,

good frames received count GBL_FRMSYNC_CNT,

drop lock count GBL_FRMSYNC_DROP,

total bytes received GBL_FRMSYNC_BYTES,

frames per second GBL_FRMSYNC FPS,

source inversion state GBL_FRMSYNC_INV,

total all bytes received GBL_FRMSYNC_BYTES and

total bytes received in search mode GBL_FRMSYNC_SBYTES.

Additional mnemonics for the EDT board interace are

EDT channel selected GBL_.FRMSYNC_CHAN and

EDT buffer overrun count GBL_FRMSYNC_OVERRUN.

EDT rate change GBL_FRMSYNC_RATE allows the user to change the
buffering of the frame sync program based on the rate changed
through this database variable. Data flow will be momentarily
disrupted during the reconfiguration and then restarted.

Valid values are 100 to 400M bits per seconds.

Caveats for running FrameSync program on RedHat Linux:

The FrameSync program is built against the EDT library ‘1ibedt.so’. RedHat does not
support the Lazyload feature in it’s loader which will cause the program to fault and exit if
the EDT driver is not loaded on the system running ITOS. To get around this problem for
users wanting to use FrameSync without an EDT we have included the ‘1ibedt.so’ that
FrameSync was built against in the ‘$ITOS_DIR/etc’ directory. The user can then create or
add to their local shell environment LD_LIBRARY PATH with ‘$ITOS_DIR/etc’ directory
in the search path in your shell startup script like ‘.bashrc’ or ‘. cshrc’.

For ‘csh’ like shells use something like:
setenv LD_LIBRARY_PATH <ITOS_DIR>/etc
or
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:<ITOS_DIR>/etc

For ‘sh’ like shells use something like:
export LD_LIBRARY_PATH=<ITOS_DIR>/etc
or
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<ITOS_DIR>/etc

where <ITOS_DIR> is replaced with the directory where the ITOS
package was installed.

Command line options include the following:
FrameSync <options>

$Date: 2006/09/25 22:04:12 $

Chapter 4: Telemetry Frame Synchronization 14

where <options> are:

-sync, -fbits, -sbits, -wbits, -bytes, -slip, -check, -fly,
-port, -file, -fdelay, -server, -client, -iport, -comm, -baud,
-stop, -data, -parity, -hwhand, -verbose, -silent, -reverse, -drand,
-retry, -timeo, -fifo, -help, -debug, -debugl, -debug2, -debug3,
-wrap, -edt, -unit, —chan, -chan?2, -brate

In options below, Uppercase letters indicate minimum characters required.

** General Options **
-BYtes <count> -- number of bytes in output frame word > 0, default = 2
-CHEck <count> -- number of sync’d frames in a row before lock state
is achieved. If sync is not maintained for this many
frames all checked frames will be discarded and the
program will return to search state
0 means no checking is done, default = 0

-DEBUG -- sets verbosity to debug level, 4 or 4++, see -verbose

-DEBUG1 -- sets verbosity to debug level, 5, see -verbose

-DEBUG2 -- sets verbosity to debug level, 6, see -verbose

-DEBUG3 -- sets verbosity to debug level, 7, see -verbose

-DRand —-- frame sync will derandomize incoming frames

-FBits <bits> -- input frame size (including sync) in bits > 0

-FLy <count> -- number of out of sync frames before drop lock,
default = 0

-HELP or -7 -- Print this usage message and exits

-RAw <string> -- optional filename to save raw input,

date and time are appended to the filename,
if no filename given then default = FrameRAW
-RLen <number> -- optional raw file size limit before opening a,
new one and appending ’.xxx’ to filename,
Size is in MBytes not to exceed 2000, default = 100,
-RETry -- Try to reconnect to the input after EOF rather than
exiting. If the reconnect fails then exit. This is
usefull for socket or serial connections that might
get extraneous hangups such as with -hwhand option

-REVerse -- reverse order bits in word msb->1sb ... 1lsb->msb
-SIlent -- output no debug messages, sets verbosity level to O
-SYnc <pattern> -- defines sync pattern, may use Ox notation for hex
-SBits <bits> -- sync size in bits (1 to 32)

-SLip <bits> -- allowable sync slippage in bits, default = 0

-TImeo <msecs> -- number of milliseconds (> 0) after input data stops

that is considered Loss-0f-Data, O for no timeout,
default = 10000 (or 10 seconds)

-VERBOSE -- increase vebosity level for debug messages,
each -verbose adds 1 to verbosity level, default =1,
Levels above 3 should only be used for debugging:
0 -- silent, nothing except error and panic messages
1 -- normal, + some warning messages

$Date: 2006/09/25 22:04:12 $

Chapter 4: Telemetry Frame Synchronization 15

-WBits <bits>

** Input Options -
-FDelay <usecs>

-FILe <name>

** Input Options -
-EDT <string>

-UNit <number>
-CHAn <number>
—CHAN2 <number>

-BRate <number>

** Input Options -
-BAud <string>
-COmm <string>

-DAta <string>
-PArity <string>
-STop <string>
-HWhand

** Input Options -
-CLient <string>

-IPort <string>

-- verbose, all warnings and some info messages
-- very verbose, all warnings and all info messages
-- debug, + I/0 config & periodic status message
debugl, + status message for every frame

-- debug2, + frame dump to STDERR in ASCII

-- debug3, + termio dump & sync mask config data
-- frame word size in bits (1 to 16), default = 16

~NOoO O WN
|
|

File *x

-- Delay between frame outputs when -file used,
default = 0

—— name of file to use as input instead of -comm,
default = NULL

EDT Serial **

—-- optional input EDT device as input instead of -comm,
default = ’edt’
-file, -iport, -comm and -edt are mutually exclusive

—--— Unit number of EDT device, default = 0

-- Channel number, default = 0

-- Alternate Channel number if any, not same as -chan,
default = -1

-- Expected EDT thruput rate in bits/sec, can use
shorthand notation of K for kilo or M for mega,
Valid range is 100 - 400M,
If then option is not given the program will look at
GBL_FRMSYNC_RATE mnemonic for the bit rate in bps.
If this is out of range then the default = 1M

Serial **

--— input baud rate, 300 .. 38400,... default = 19200

-— input comm port to receive data, default = NULL
-file, -iport, —-comm and -edt are mutually exclusive
If none are specified, data input from STDIN

-- number of data bits (7 or 8), default = 8

-- parity (’even’, ’odd’, ’none’), default = ’none’

-- number of stop bits (1 | 2), default = 1

-- enable hardware handshaking (RTS/CTS & DSR/DTR),
with this enabled a modem disconnect will cause an
EOF on the input which will cause the program to exit
unless the -retry option is enabled

Socket **

-— input is to be a socket client either UDP or TCP,
default = NULL
-server & -client are mutually exclusive,

-- Used with -server or -client, this defines the
host and port used for input, default = NULL

$Date: 2006/09/25 22:04:12 $

Chapter 4: Telemetry Frame Synchronization 16

When -client format is host:port,
If no -server or -client defaults to -server TCP

-SErver <string> -- input is to be a socket server either UDP or TCP,

** Jutput Options *x*

-FIFo <name>

-POrt <number>

-PRoto
-WRap <list>

default = NULL
-server & —client are mutually exclusive

- Output goes to a named FIFO. default = NULL,

-fifo & -port are mutually exclusive,

- port number to listen for output socket connection,

default = 0, no port assigned, no data output,
unless -silent & no -fifo then output goes to STDOUT

- output socket protocol, TCP or UDP, default = TCP
- Quoted space seperated list of header/trailer

wrappers output with frames, default = NULL,
See ITOS T&C Interfaces - telemetry wrappers,
The most usefull header is ’smex’ a.k.a. LEO-T.

$Date: 2006/09/25 22:04:12 §

Chapter 5: Telemetry Output 17

5 Telemetry Output

The frame_sorter program can provide a telemetry stream to customer ground support
equipment (GSE) computers. In all cases, it can provide a copy of it’s input stream, and in
most cases, it can provide a subset of the input stream.

To request telemetry output, applications should initiate a TCP connection to the ITOS
telemtry controller on the main ITOS workstation. The controller normally listens on port
32000, but the port number, is configurable at run time. Once a connection is formed,
request data by issuing an ASCII acquire command of the form

ac transport [destination] fowtype [filter]

The transport argument may be one of ‘client_tcp’, ‘server_tcp’ (or just ‘tcp’), or
‘udp’ depending on which transport the user desires. The destination which may be specified
for each transport is given by the following table. Note that IP addresses may be substituted
for host names.

‘client_tcp’
for client-side TCP/IP. This is followed by a set of hostname and port number
pairs and other parameters controlling failover and retry. It has the form:
client_tcp [cycles] host port [host port [host portl] [retries [in-
tervall]

where:
cycles is the number of times ITOS should cycle through the list of

host/port pairs trying to establish or re-establish a connection
before giving up.

host

port are a hostname and port number to which the ITOS should initiate
a connection.

retries is the number of times ITOS should try initiating a connection to
each host/port pair in the list.

interval is the time in seconds which ITOS should wait between retries.

‘server_tcp’
or simply ‘tcp’, for server-side TCP/IP. This is followed by an optional port
number on which the ITOS should listen for a connection, followed by an op-
tional interval in seconds that ITOS should wait for a connection request to
come in. Once established, if the connection is broken, ITOS will return to lis-
tening for another connection for up to the given interval. The default interval
is 30 seconds; a zero interval means ITOS should wait forever.

‘udp’ for UDP. This is followed by a host name and port number to which the ITOS
will send data.

The flowtype may be one of ‘frames’ or ‘pkts’ for acquiring transfer frames or source
packets, respectively. If frames have been requested, the filter option is a list of VCIDs of
the form ‘vcX’, where ‘X’ is a digit from 0 to 7. If packets have been requested, the filter

$Date: 2006/09/25 22:04:12 §

Chapter 5: Telemetry Output 18

option is of the form ‘vcX [apid [apid...]]’, where ‘vcX’ is the VCID and each apid is a
digit from 0 to 2047, giving a desired source packet APID. The VCID, VCID list, and/or
the APID list may be preceded by the keyword ‘not’, which changes the filter sense from
positive to negative. For ‘ac ... frames ...’, the VCIDs in the filter presently may not
be preceded by ‘vc’. For example, the packet filter ‘vc0 1 2 3 59’ requests packets 1, 2, 3,
and 59 on VC0. The packet filter ‘vcO not 1 2 3 59’ requests all packets on VCO except
for 1, 2, 3, and 59. Similarly, ‘not vc0 1 2 3 59’ requests all packets on all VCs except for
packets 1, 2, 3, and 59 only on VCO. Finally, ‘not vcO not 1 2 3 59’ requests all packets on
all VCs except for all packets on VCO, but does request packets 1, 2, 3, and 59 on VC0.

After processing an acquire command, the controller will respond with ‘error
[message...]’ if an error occurred or with a message of the form ‘ok handle [hostname
port]’. In this case, the handle is an opaque identifier that later may be used to adjust
the filtering on the data connection. In response to ‘ac tcp...’ commands, the hostname
and port is the IP address that the user should connect to actually receive data. When the
user successfully connects to the given host at the given port, the requested data will begin
flowing immediately as it becomes available from the spacecraft. For UDP data flows,
the datagrams will begin flowing immediately after the command response has been sent.
Note that due to internal processing, datagrams may begin flowing before the response is
received by the IGSE.

$Date: 2006/09/25 22:04:12 §

Chapter 6: Telemetry Packet Grouping 19

6 Telemetry Packet Grouping

ITOS provides optional handling of CCSDS packet groups whereby a packet group can
be concatenated into a single large packet. A packet group is a set of packets of the same
AppID related by the two-bit grouping flags in the CCSDS packet header. The newly
formed packet can be assigned a new AppID. It is forwarded downstream to for unpacking
and archiving just like all other packets.

Telemetry packet group concatenation is controlled by a configuration file, given by gbl_
tlm_pktgroup. Each entry in the file consists of one line containing three integers: The
incoming AppID, the outgoing AppID, and the expected length of the data field length
for the outgoing packet. The third field currently is unused, but must be present, and we
recommend that you set it to zero. Comments are introduced by the ‘#’ character and
continue to the end of the line. Here is an example:

AppID in | AppID out | packet length out
5 5 0
10 2 0

If gbl_tlm_pktgroup is missing, or contains the null string, telemetry packet group
handling is disabled. If it names a valid configuration file, then when ITOS extracts a
telemetry packet from the transfer frame stream, it will look up the AppID in column one
of the configuration file. If it finds the AppID listed, and the grouping flags in the packet
header are set to 01 binary, it will begin accumulating a concatenation of the packet group.
Subsequent packets of the same AppID should have grouping flags set to 00 binary until
the last member of the group, which will carry a 10 binary in the grouping flags.

Unexpected grouping flag values (11 or 01 binary) or packet sequence errors during the
accumulation of a group will cause the concatenation to be abandoned. Once the last packet
in the group has been received, the new packet will be generated with the AppID given by
the selected entry in the configuration file.

$Date: 2006/09/25 22:04:12 §

Chapter 7: Command Wrappers 20

7 Command Wrappers

(acq7

This prepends a CCSDS acquisition sequence of 144 bits of alternating ones and
zeros (18 bytes of Oxaa) to the command.

‘asist_swts’

‘cltu’

€eos

‘ipdu’

)

‘itp

‘nascom’

‘notf’

rand’

‘rtp

‘scat’

This wrapper transforms the outgoing command into an AscCIi-hex coded com-
mand sequence surrounded by Ascit SFDUs that is suitable for sending to an
NTGSE-based computer. This must be the outermost (last specified) wrapper
when used.

This generates a command link transmission unit (CLTU) from the command
frame. This must be the innermost (first specified) wrapper when used.

This is an Earth Observing System (EOS) header adapted for use by the SMEX
project, also known as LEO-T. The source is set from gbl_nascom_src, and the
destination is set from gbl_nascom_dest.

This is the Inter-project Data Unit header as defined by Avtec PTP used by
AstroRT for the Glast I&T facility. The source code is set from gbl_nascom_
src, and the destination is set from gbl_nascom_dest. See Avtec PTP for
Windows User’s Guide, Ver.1.49, July 19, 2001 (TM -01-13), Appendix B tables
B-1, B2, B3, B4 for details.

This prepends an ITP header to the command.

This puts the outgoing command into a 4800-bit NASCcoM block. It doesn’t
work if the command is longer than will fit in the block. The NASCOM source
code is set from gbl_nascom_src, and the destination is set from gbl_nascom_
dest. Three formats are supported, selected by the desination code: shuttle,
GN, and DSN. The ‘WFF’ code selects the GN format, the ‘MDM’ code selects the
shuttle format, and everything else selects the DSN format.

This is a kludge that removes the transfer frame header so we can transmit
packets. It must be the first wrapper to be useful. We are likely to remove this
wrapper from the system in a future release when we have implemented a more
rational way of transmitting packets.

This is the ccsDps standard randomization. See CCSDS 201.0-B-3: Telecom-
mand Part 1 — Channel Service. Blue Book. Issue 3. June 2000, section 3.3.1
for details.

This prepends a Real-time Transport Protocol (RTP) header to the command.
This is an internet standard header given in RFCxxxx, and is required for UDP /1P
commanding over the NASA Integrated Services Network (NISN). We only im-
plement the sequence numbering.

This transforms the outgoing command into an ASCIl-hex coded command se-
quence suitable for sending to our SCAT-based front-end computer. This must
be the outermost (last specified) wrapper when used.

$Date: 2006/09/25 22:04:12 §

Chapter 7: Command Wrappers 21

‘swts_txpkt’
This wrapper transforms the outgoing command into an ASCII-hex coded com-
mand sequence that is suitable for sending to a SpaceWire Test Set-based com-
puter. The result of this wrapper is a well-formed SWTS TXPKT command.
This must be the outermost (last specified) wrapper when used.

‘tsi’ This is the command header TSI Telesys front-end system used by the Berkeley

Ground System.

‘auencode’

This runs the command through the uuencode UNIX application to convert
the command to Ascii. This should be the outermost wrapper when sending
commands through e-mail.

7.1 EOS Ground Message Header

The 24-byte EOS Ground Message Header looks like this:

o S o ot it S e o +-——+
| msg | X | src | dest | X | date | scid | seq | s/w | msg | X |
| type | | id | id | | time | | num | ver | len | I
[+ |+ 1+ 1 1 207 1 2 | 21 21 2 |4/
o o o s o S S e -t

where the fields are, in order:

field bytes(s) description

message type 0 Normally 3, (Command data message).

source 1D 2 Set to the value given by gbl_nascom_src. Unused by
GSFC SMEX and SMEX-heritage missions.

destination ID 3 Set to the value given by gbl_nascom_dest. Unused by
GSFC SMEX and SMEX-heritage missions.

message date & time 5-11 The date and time the message was generated, UTC, in

PB5 (option C) format. See below for details and refer-
ence PB5 Time Code 1982-05-27, Aerospace Data System
Standard, Part 5: Clock and Time Code Standard, Stan-
dard 5.6 Parallel Grouped Binary Time Code for Space
and Ground Applications — PB5.

spacecraft ID 12-13

sequence number 14-15 A 16-bit upcounting sequence counter; unused by GSFC
SMEX and SMEX-heritage missions.

software version 16-17 Set to zero; unused by GSFC SMEX and SMEX-heritage
missions.

message length 18-19 The total message length in bytes, including the EOS

ground message header.
The date/time field looks like this:
e e e e o e +

| flag | tjd | secs | msecs | usecs | fill |
| 1 |1 14| 17 | 10 | 10 | 4 |
S e S e S e +

$Date: 2006/09/25 22:04:12 §

Chapter 7: Command Wrappers 22

where the fields are, in order:

field
flag
tjd

secs
msecs
usecs

bit(s) description

0 Always 1.
1-14 Truncated Julian Day — the number of days since October
10, 1995.

15-31 Seconds of day.
0-9 Milliseconds of second.
10-19 Microseconds of millisecond.

7.2 TPDU Ground Message Header

The 32-byte IPDU Ground Message Header looks like this:

+————- +-——+ A +-——+
| head | X | | X | test | X |
[ver | | | | (.
| 4 | 4| 31 1 | 4]
e s TR e S ot
| | | /
\ . | o/
\ / | /
+-———- 4= do——m— - e to——t————— e - Fm——t————— +-——+
| IPCU| IPDU| X | src| dest| mesgl|l X | head| msg | flags| X | scidl X |
| sync| len | | id | id | typel | ver | timel | | | |
l 4 | 4 |41 11 1+ | ¢+ [+ ¢+ [7 1 1 121 1 14|
e e e e St e e e e e -t
I |
/ \
/ \
e e e o o e +
| flag | tjd | secs | msecs | usecs | fill |
| 1 | 141 17 | 10 | 10 | 4 |
o e o e e o +
where the fields are, in order:
field bytes(s) description
IPDU sync 0-3 IPDU sync code, 0x74C2472C.
IPDU len 4-7 Total message length in bytes including IPDU header.
source ID 12 Set to the value given by gbl_nascom_src.
destination ID 13 Set to the value given by gbl_nascom_dest.
message type 14 Set to 3, (Command data message).
header version 16 4 bits unsigned integer set to 1.

$Date: 2006/09/25 22:04:12 §

Chapter 7: Command Wrappers 23

message time (GMT) 17-23 The date and time the message was generated, UTC, in

NASA PB5 (option C) format. See below for details and
reference PB5 Time Code 1982-05-27, Aerospace Data
System Standard, Part 5: Clock and Time Code Stan-
dard, Standard 5.6 Parallel Grouped Binary Time Code
for Space and Ground Applications — PB5. See time
breakout below.

data indicator 25 bit Operational = 0, Test data = 1; always set to 1.
4

spacecraft 1D 28 Supplied from gbl_spacecraftid.

Where message time field are, in order as follows:
field bit(s) description
flag 0 Always 1.
tjd 1-14 Truncated Julian Day — the number of days since the

epoch midnight October 10, 1995.

secs 15-31 Seconds of day.
msecs 0-9 Milliseconds of second.
usecs 10-19 Microseconds of millisecond.

Note: All unused, spare, fill or non-applicable fields for command data message type are

set to zero (0

7.3 NAS

).
COM 4800-bit block header

The NASCOM 4800-bit block format depends on the destination ID; that is, different
destinations expect blocks to have different formats. The basic format looks like this:

e e e R - o e +
| sync | src | dest | seq | fmt | scid | spare |\
o +o———— +o————— e +————- +o———— e + \
| 24 | 8 | 8 | 3 | &5 | 8 | 8 I\\
AR
... \
1
AW
\ A\
\ +-———-- to————— +o————— +-———- +o———— +
\| type | spare | flags | len | time | data
- o = e - +
| 8 | 8 | 3 | 13| 48 |
where the fields are, in order:
field #bits description
sync 24 sync pattern 0x627627
src 8 source ID, set from gbl_nascom_src.
dest 8 destination ID, set from gbl_nascom_dest.
seq 3 block sequence count
fmt 5 block format, always 9.
scid 8 spacecraft ID, set from gbl_spacecraftid.

$Date: 2006/09/25 22:04:12 §

Chapter 7: Command Wrappers 24

type 8 message type, normally DSN throughput, 105 octal. If
the destination is MDM (112) this field is set to MCC
command message, 217 octal.

flags 3 always 010 binary.
len 13 message length
time 48 block time stamp, formatted as a PB4 time.

A PB4 time looks like this:

If the destination is WFF (96) or MDM (112), the 16-bit word at byte 596 (from 0) is
set to 0x004t.

If the destination is MDM (112), the spacecraft ID field, and following spare byte are
set to all ones, the spare byte following the message type (byte 9 counting from 0) is set
to the destination ID, and the data length is increased by 48 bits to account for a special
command header, which is inserted at byte 18:

+—————— o F————— +——————— +

| msgnum | payload | cmd type | OU mode |
e e e R +

7.4 SpaceWire Test Set TXPKT command

The SpaceWire Test Set TXPKT command may be used to configure the SWTS to
transmit a single packet one or more times.

swts txpkt <portNum> -p <spwAddr> <protocolID> <XX> <XX> <XX> ... <XX> [-L <loopCnt>]
where the fields are, in order:

Field Description

$Date: 2006/09/25 22:04:12 §

Chapter 7: Command Wrappers

portNum

The
phys-
ical
SpaceWire
port
num-
ber, a
value
be-
tween
1 and
4
inclu-
sive,
from
which
the
packet
will

be
trans-
mit-
ted,
set
from
gbl_
swts_
txpkt_
port_
num.

$Date: 2006/09/25 22:04:12 §

25

Chapter 7: Command Wrappers

spwAddr

protocolID

The
SpaceWire
ad-
dress
to
which
the
packet
will

be
routed,
set
from
gbl_
swts_
txpkt_
Spw_

addr.
The

SpaceWire
pro-

tocol

1D,

set

from

gbl_
swts_
txpkt_
SpwW_
protocol_
id.

$Date: 2006/09/25 22:04:12 §

26

Chapter 7: Command Wrappers 27

loopCnt The
loop
count
iIs an
op-
tional
pa-
ram-
eter
that
di-
rects
the
SWTS
to
trans-
mit
the
packet
a
speci-
fied
num-
ber of
times,
set
from
gbl_
swts_
txpkt_
loop_
cnt.

7.5 ASIST/NTGSE SFDU command

This command wrapper was developed to enable commands to be transmitted to a copy
of the SpaceWire Test Set, or SWTS, that has been specially modified for the LRO project.
The wrapper matches an interface that ASIST uses to communicate with the NTGSE.
CCSD3ZA0000100000165C7333TAODEST00000011<cmdDest>C7333IA0LABLO0000020<cmdLabl>C7333IA0

where the fields are, in order:

Field Description

$Date: 2006/09/25 22:04:12 §

Chapter 7: Command Wrappers

cmdDest

cmdLabl

cmdSsim

The
com-
mand
desti-
na-
tion,
set
from
gbl_
asist_
swts_
cmd _

dest.
The

com-
mand
label,
set
from
gbl_
asist_
swts_
cmd

labl.
The

com-
mand
direc-
tive,
set
from
gbl
asist_
swts_
cmd

ssim.

$Date: 2006/09/25 22:04:12 §

28

Chapter 8: Command Control 29

8 Command Control

8.1 Inter-Command Delay

The 1T0S command subsystem can be set to insert a minimum delay between successive
commands. Set the floating-point mnemonic gb1l_cmd_delay to the desired delay in seconds.

8.2 Virtual Channel Selection

Commands my be transmitted on any command virtual channel. This is controlled by
the sTOL vc directive, which sets gbl_vc.

$Date: 2006/09/25 22:04:12 §

Chapter 9: Command Networking 30

9 Command Networking

The cmd_transmit program can send commands using Internet Protocol (1P) sockets,
over either the Transport Control Protocol (TCP) or User Datagram Protocol (UDP). It can
acccept or initiate TCP connections, or send unicast or multicast UDP datagrams.

The use of mulitple, simultaneously established command streams is available when gbl _
cm_txport is set to either ‘client_tcp’ or ‘server_tcp’. The switch gbl_cmd_portsw
activates the desired command stream via user input once the subsystem is enabled.

The command system defaults to a single stream convention to maintain the require-
ments of previous users. Therefore, the gbl_cmd_num_ports and gbl_cmd_portsw Globals
default to 1 and 0 respectively by the database. The single stream User needs only set the
standard gbl_cmd_host and gbl_cmd_port Globals prior to enabling the subsystem.

If mulitple streams are desired, the following must be completed prior to enabling the
subsystem: GBL_CMD _NUM_CMDS set to the desired number of streams, corresponding
gbl_cmd_host [i].html,,,] and gbl_cmd_port [i].html,,,] set for each command stream (the
array index, i, is used to reflect the command stream selection and starts at 0; max. i =
GBL_CMD_NUM_PORTS - 1), and the GBL.CMD_PORTSW Global set to activate the
desired stream (streams are designated by their array index).

The advent of simultaneous command connections, mentioned above, caused the use of
gbl_cmd_host and gbl_cmd_port to change. However, these changes should be transparent
to single stream users. These Globals are now set either by the User (in single stream mode)
or by software (multiple stream mode) to reflect the active command stream.

If gbl_cm_txport is set to ‘server_tcp’, the system will listen on the IP port given by
gbl_cmd_port for a connection. When the connection is broken, the program will reset and
begin listening for a new connection. This cycle will continue until the command subsystem
is shut down.

If gbl_cm_txport is set to ‘client_tcp’, the system will initiate a connection to the
host given by gbl_cmd_host and port in gbl_cmd_port. If the connection is broken the
command subsystem must be shut down and restarted to re-establish it.

If gbl_cm_txport is set to ‘udp’, the system will send datagrams to the host and port
combination given by gbl_cmd_host and gbl_cmd_port. If the given host address is a class
D address, the cmd_transmit program automatically will set the multicast time-to-live to
127 for global transmission.

If gbl_cm_txport is set to ‘serial’, the system will send commands to the serial device
named in gbl_cmd_file and the settings for the device are defined in gbl_cmd_serial.

Finally, if gbl_cm_txport is set to ‘email’, the system will send commands in electronic
mail to the address given by gbl_cmd_host with a Sender/Reply address listed in gb1l_cmd_
host[1]. Both should be a valid e-mail address with the latter being set to accomodate
sending from behind a firewall. When using the ‘email’ transport, the outermost wrapper
should be ‘uuencode’. Note that ¢md_transmit runs the Mail application to send com-
mands through e-mail, so an SMTP server (sendmail) must be enabled on systems using
this transport.

$Date: 2006/09/25 22:04:12 §

Chapter 10: Command Packet Grouping 31

10 Command Packet Grouping

ITOS can create a group of command packets from a single long command packet.
Group here means a set of packets with the same AppID related using the grouping flags
in the CCSDS packet header. An AppID can be assigned to the commands in the group
which is different from the AppID on the command from which the group was formed. The
maximum length of commands in the group is user defined.

This functionality was added for the Swift BAT instrument, and can be used as an
alternative to CCSDS command segmentation. The Swift spacecraft places a limit of about
60 bytes on the length of a command packet which can be passed to an instrument. The
BAT instrument uses software with previous mission heritage, and for which commands
longer than 60 bytes are defined. So the ability to split a command into a command group
was added to ITOS so longer commands can be passed through the spacecraft bus to the
instrument, which will re-assemble the packet group into a single packet the way ITOS can
assemble telemetry packet groups into a single telemetry packet.

Command packet group creation is controlled by a configuration file, given by gbl_
cmd_pktgroup. Each entry in the file consists of one line containing three integers: The
incoming ApplID, the outgoing AppID, and the maximum command packet data field length
for outgoing packets. Comments are introduced by the ‘#’ character and continue to the
end of the line. Here is an example:

Incoming Apid | Outgoing Apid | New Pkt Len
5 5 15
10 2 5

If gbl_cmd_pktgroup is missing, or contains the null string, command packet group cre-
ation is disabled. If it names a valid configuration file, then as ITOS generates a spacecraft
command, it will look up the AppID in column one of the configuration file. If it finds the
AppID listed, it will split the command packet into a group of command packets, with each
command in the group given the AppID given by the second column of the selected entry.
The length The data field of each command in the group, except possilby the last, will be
the number of bytes given by the third column in the selected configuration file entry. If
the original command is shorter than the maximum length, then it is sent with the new
AppID but with it’s grouping flags set to 11 binary.

Both the checksum given by gbl_cmd_chksm_pkt and any checksum defined in the
database for the original (long) command are applied to each command in the group. For
a two or four byte checksum, the packet length specified in the configuration file should
be an even number. For SMEX-style CCSDS commands which contain two-byte secondary
headers, the secondary header is duplicated in each command in the group. For regular
CCSDS commands, any secondary header will appear only in the first packet in the group.

$Date: 2006/09/25 22:04:12 §

